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Abstract:This paper is concerned the problem of H∞ control for neural networks with mixed time-varying delays
which comprising different interval and distributed time-varying delays via hybrid feedback control. The interval
and distributed time-varying delays are not necessary to be differentiable. The main purpose of this research is to
estimate exponential stability of neural network with H∞ performance attenuation level γ. The key features of the
approach include the introduction of a new Lyapunov-Krasovskii functional with triple integral terms, the employ-
ment of a tighter bounding technique, some slack matrices and newly introduced convex combination condition
in the calculation, improved delay-dependent suff cient conditions for the H∞ control with exponential stability
of the system are obtained in terms of linear matrix inequalities (LMIs). The results of this paper complement
the previously known ones. Finally, a numerical example is presented to show the effectiveness of the proposed
methods.
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1 Introduction

During the past decades, the problem of the reliable
control has received much attention [1,3,11,12]. Neu-
ral networks have received considerable due to the ef-
fective use of many aspects such as signal process-
ing, automatic control engineering, associative mem-
ories, parallel computation, fault diagnosis, combi-
natorial optimization and pattern recognition and so
on [5, 13, 14]. It has been shown that the presence of
time delay in a dynamical system is often a primary
source of instability and performance degradation [6].
Many researchers have paid attentions to the problem
of stability for systems with time delays [8, 9]. The
H∞ controller can be used to guarantee closed loop
system not only a stability but also an adequate level
of performance. In practical control systems, actu-
ator faults, sensor faults or some component faults
may happen, which often lead to unsatisfactory per-
formance, even loss of stability. Therefore, research
on reliable control is necessary.

Most of the works have been focused on the prob-
lem of designing a H∞ controller that stabilizes lin-
ear systems with time-varying. Also, it is assumed
that the perfect information is available for state feed-
back and the controlled output is disturbance free. The

problem of H∞ control design usually leads to solving
an algebraic Lyaponov equation. It should be noted
that some works have been dedicated to the problem
of reliable control for nonlinear systems with time-
varying delay [3, 11, 12]. However, to the best of the
authors knowledge, so far the research on reliable H∞

control is still an open problem, which is worth further
investigation.

Motivated by above discussion, in this paper we
have considered the problem of H∞ control for neural
networks with mixed time-varying delays which com-
prising different interval and distributed time-varying
delays via hybrid feedback control. The interval and
distributed time-varying delays are not necessary to
be differentiable. The main purpose of this research
is to estimate exponential stability of neural network
with H∞ performance attenuation level γ. The key
features of the approach include the introduction of
a new Lyapunov-Krasovskii functional with triple in-
tegral terms, the employment of a tighter bounding
technique, some slack matrices and newly introduced
convex combination condition in the calculation, im-
proved delay-dependent suff cient conditions for the
H∞ control with exponential stability of the system
are obtained in terms of linear matrix inequalities
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(LMIs). The results of this paper complement the pre-
viously known ones. Finally, a numerical example is
presented to show the effectiveness of the proposed
methods.

The rest of this paper is organized as follows. In
Section 2 , some notations, def nitions and some well-
known technical lemmas are given. Section 3 presents
the H∞ control for exponential stability and the H∞

control for exponential stability. The numerical exam-
ples and their computer simulations are provided in
Section 4 to indicate the effectiveness of the proposed
criteria. Finally, the paper is concluded in Section 5.

2 Definitions of Function Spaces and
Notation

Notations
The following notation will be used in this

paper: R
n denotes the n−dimensional space. AT

denotes the transpose of matrix A, A is symmet-
ric if A = AT , λ(A) denotes all the eigenvalue
of A, λmax(A) = max{Re λ : λ ∈ λ(A)},
λmin(A) = min{Re λ : λ ∈ λ(A)}, A > 0 or
A < 0 denotes that the matrix A is a symmetric and
positive def nite or negative def nite matrix. If A,B
are symmetric matrices, A > B means that A− B is
positive def nite matrix, I denotes the identity matrix
with appropriate dimensions. The symmetric term
in the matrix is denoted by ∗. The following norms
will be used: || · || refer to the Euclidean vector norm;
||φ||c = supt∈[−̺,0] ||φ(t)|| stands for the norm of a
function φ(·) ∈ C[[−̺, 0],Rn].

Consider the following neural network system
with mixed time delays

ẋ(t) = −Ax(t) +Bf(x(t)) +Cg(x(t− h(t)))

+D

∫ t

t−d(t)
h(x(s))ds + Ew(t) + U (t),

z(t) = A1x(t) +B4x(t− h(t)) + C1u(t) (1)

+D1

∫ t

t−d(t)
x(s)ds + E1w(t),

x(t) = φ(t), t ∈ [−̺, 0],

where x(t) ∈ R
n is the state vector, w(t) ∈ R

n the
deterministic disturbance input, z(t) ∈ R

n the sys-
tem output, f(x(t)), g(x(t)), h(x(t)) the neuron acti-
vation function, A = diag{a1, ..., an} > 0 a diag-
onal matrix, B,C,D,E,A1, B4, C1,D1, E1 are the
known real constant matrices with appropriate dimen-
sions, φ(t) ∈ C[[−̺, 0],Rn] the initial function, The

state hybrid feedback controller U (t) satisf es:

U (t) = B1u(t) +B2u(t− τ(t)) (2)

+B3

∫ t

t−d1(t)
u(s)ds,

where u(t) = Kx(t) and K is a constant matrix con-
trol gain, B1, B2, B3 are the known real constant ma-
trices with appropriate dimensions. Then, substituting
it into (1), it is easy to get the following:

ẋ(t) = [−A+B1K]x(t) +Bf(x(t)) + Ew(t)

+Cg(x(t− h(t))) +D

∫ t

t−d(t)
h(x(s))ds

+B2Kx(t− τ(t)) +B3K

∫ t

t−d1(t)
x(s)ds,

z(t) = [A1 + C1K]x(t) +B4x(t− h(t)) (3)

+D1

∫ t

t−d(t)
x(s)ds+ E1w(t),

x(t) = φ(t), t ∈ [−̺, 0],

where the time-varying delays function h(t), τ(t),
d(t) and d1(t) satisfy the condition

0 ≤ h1 ≤ h(t) ≤ h2, 0 ≤ d(t) ≤ d,

0 ≤ τ(t) ≤ τ, 0 ≤ d1(t) ≤ d1, (4)

where h1, h2, τ , d, d1, ̺ = max{h2, τ, d, d1}
are known real constant scalars and we denote
h12 = h2 − h1.

In this paper, we consider activation functions
f(·), g(·) and h(·) satisfy Lipschitzian with the Lip-
schitz constants f̂i, ĝi and ĥi > 0:

|fi(x1)− fi(x2)| ≤ f̂i|x1 − x2|,

|gi(x1)− gi(x2)| ≤ ĝi|x1 − x2|, (5)
|hi(x1)− hi(x2)| ≤ ĥi|x1 − x2|,

i = 1, 2, ..., n, ∀x1, x2 ∈ R,

and we denote that

F = diag{f̂i, i = 1, 2, ..., n},

G = diag{ĝi, i = 1, 2, ..., n}, (6)
H = diag{ĥi, i = 1, 2, ..., n}.

Definition 1. [10]. Givenα > 0. The zero solution
of system (1), whereu(t) = 0, w(t) = 0, isα−stable
if there is a positive numberN > 0 such that every
solution of the system satisfies

||x(t, φ)|| ≤ N ||φ||ce
−αt, ∀t ≤ 0.
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Definition 2. [10]. Givenα > 0, γ > 0. TheH∞

control problem for system (1) has a solution if there
exists a memoryless state feedback controlleru(t) =

Kx(t) satisfying the following two requirements:
(i) The zero solution of the closed-loop system, where
w(t) = 0,

ẋi(t) = −Ax(t) +Bf(x(t)) + Cg(x(t− h(t)))

+D

∫ t

t−d(t)
h(x(s))ds + U (t),

is α−stable.
(ii) There is a numberc0 > 0 such that

sup

∫

∞

0 ||z(t)||2dt

c0||φ||2c +
∫

∞

0 ||w(t)||2dt
≤ γ,

where the supremum is taken over allφ(t) ∈

C[[−̺, 0],Rn] and the non-zero uncertaintyw(t) ∈

L2([0,∞],Rn).

Lemma 3. [4]. (Cauchy inequality) For any symmet-
ric positive definite matrixN ∈ Mn×n andx, y ∈ R

n

we have

±2xT y ≤ xTNx+ yTN−1y.

Lemma 4. [4]. Given a positive definite matrix
Z ∈ Rn×n, and two scalar0 ≤ r1 < r2 and vec-
tor functionx : [r1, r2] → R

n such that the following
integrations concerned are well defined, then we have

(

∫ r2

r1

x(s)ds
)T

Z
(

∫ r2

r1

x(s)ds
)

≤ (r2 − r1)

∫ r2

r1

xT (s)Zx(s)ds.

Lemma 5. [7]. For any positive definite symmetric
constant matrixP and scalarτ > 0, such that the
following integrations are well defined

−

∫ 0

−τ

∫ t

t+θ

xT (s)Px(s)dsdθ ≤ −

2

τ2

(

∫ 0

−τ

∫ t

t+θ

x(s)dsdθ
)T

P
(

∫ 0

−τ

∫ t

t+θ

x(s)dsdθ
)

.

Lemma 6. [4]. (Schur complement) Given con-
stant matricesZ1, Z2, Z3 whereZ1 = ZT

1 andZ2 =

ZT
2 > 0. ThenZ1 + ZT

3 Z
−1
2 Z3 < 0 if and only if

[

Z1 ZT
3

Z3 −Z2

]

< 0 or

[

−Z2 Z3

ZT
3 Z1

]

< 0.

3 Stability analysis

In this section, we will present stability criterion for
system (3).
Consider a Lyapunov-Krasovskii functional candidate
as

V (t, xt) =

14
∑

i=1

Vi(t, xt), (7)

where

V1(xt) = xT (t)P1x(t) + 2xT (t)P2

∫ t

t−h2

x(s)ds

+

(

∫ t

t−h2

x(s)ds
)T

P3

∫ t

t−h2

x(s)ds

+2xT (t)P4

∫ 0

−h2

∫ t

t+s

x(θ)dθds

+2

(

∫ t

t−h2

x(s)ds
)T

P5

×

∫ 0

−h2

∫ t

t+s

x(θ)dθds

+

(

∫ 0

−h2

∫ t

t+s

x(θ)dθds
)T

×P6

∫ 0

−h2

∫ t

t+s

x(θ)dθds,

V2(xt) =

∫ t

t−h1

e2α(s−t)xT (s)R1x(s)ds,

V3(xt) =

∫ t

t−h2

e2α(s−t)xT (s)R2x(s)ds,

V4(xt) = h1

∫ 0

−h1

∫ t

t+s

e2α(θ−t)ẋT (θ)Q1ẋ(θ)dθds,

V5(xt) = h2

∫ 0

−h2

∫ t

t+s

e2α(θ−t)ẋT (θ)Q2ẋ(θ)dθds,

V6(xt) = h12

∫

−h1

−h2

∫ t

t+s

e2α(θ−t)ẋT (θ)

×Z2ẋ(θ)dθds,

V7(xt) =

∫ 0

−d

∫ t

t+s

e2α(θ−t)hT (x(θ))

×Uh(x(θ))dθds,

V8(xt) =

∫ 0

−d1

∫ t

t+s

e2α(θ−t)uT (θ)S2u(θ)dθds,

V9(xt) = τ

∫ 0

−τ

∫ t

t+s

e−2α(θ−t)u̇T (θ)S1u̇(θ)dθds,

V10(xt) =

∫

−h1

−h2

∫ 0

s

∫ t

t+u

e2α(θ+u−t)ẋT (θ)

×Z1ẋ(θ)dθduds,
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V11(xt) =

∫ 0

−h1

∫ 0

τ

∫ t

t+s

e2α(θ+s−t)ẋT (θ)

×W1ẋ(θ)dθdsdτ,

V12(xt) =

∫ 0

−h2

∫ 0

τ

∫ t

t+s

e2α(θ+s−t)ẋT (θ)

×W2ẋ(θ)dθdsdτ,

V13(xt) =

∫ 0

−h2

∫ 0

τ

∫ t

t+s

e2α(θ+s−t)ẋT (θ)

×W3ẋ(θ)dθdsdτ,

V14(xt) =

∫ 0

−d

∫ t

t+s

e2α(θ−t)xT (θ)Q3x(θ)dθds.

Let us set

λ1 = λmin(P1),

λ2 = 3h22λmax(Θ) + h1λmax(R1) + h21λmax(Q1)

+(h2 − h1)
2λmax(Z2) + d2λmax(H

TUH)

+d21λmax(P
−1
1 BT

1 S2B1P
−1
1 )

+τ2λmax(P
−1
1 BT

1 S1B1P
−1
1 )

+(h2 − h1)h
2
2λmax(Z1) + h21λmax(W1)

+h22λmax(W2) + d2λmax(Q3).

Theorem 7. Givenα > 0, TheH∞ control of sys-
tem (3) has a solution if there exist symmetric positive
definite matricesQ1, Q2, Q3, R1, R2, S1, S2, S3,
W1, W2, W3, Z1, Z2, Z3, diagonal matricesU > 0,
U2 > 0, U3 > 0, and matricesP1 = P T

1 , P3 = P T
3 ,

P6 = P T
6 , P2, P4, P5 such that the following LMI

hold:

Ξ1 =

[

Ξ̃1(1,1) Ξ̃1(1,2)

∗ Ξ̃1(2,2)

]

< 0, (8)

Ξ2 =

[

Ξ̃2(1,1) Ξ̃2(1,2)

∗ Ξ̃1(2,2)

]

< 0, (9)

Ξ3 = [ −0.5e−2αh2Q2 + N ] < 0, (10)

Ξ4 = [ −0.1R1 + τ2BT
1 S1B1 ] < 0, (11)

where

Ξ̃1(1,1) =





Π FTP1 P1 2dP1D

∗ −U2 0 0
∗ ∗ −U3 0
∗ ∗ ∗ Ξ1(4,4)



 ,

Ξ̃1(1,2) =





4P1B2 2d1P1B3 P1E

0 0 0
0 0 0
0 0 0



 ,

Ξ̃1(2,2) =

[

Ξ1(5,5) 0 0
∗ Ξ1(6,6) 0
∗ ∗ −0.5γ

]

,

Ξ̃2(1,1) =





−0.4R1 R1B R1C 2dR1D

∗ −U2 0 0
∗ ∗ −U3 0
∗ ∗ ∗ Ξ2(4,4)



 ,

Ξ̃2(1,2) =





4R1B2 2d1R1B3 R1B1 R1E

0 0 0 0
0 0 0 0
0 0 0 0



 ,

Ξ̃2(2,2) =





Ξ2(5,5) 0 0 0
∗ Ξ2(6,6) 0 0
∗ ∗ −S3 0
∗ ∗ ∗ −0.5γ



 ,

Π =

[

Π11 Π12

∗ Π22

]

< 0,

Π11 =







Π1,1 Π1,2 0 Π1,4 Π1,5

∗ Π2,2 Π2,3 Π2,4 0
∗ ∗ Π3,3 Π3,4 0
∗ ∗ ∗ Π4,4 0
∗ ∗ ∗ ∗ Π5,5






,

Π12 =







Π1,6 Π1,7 0 Π1,9 −ATR1

0 0 0 0 0
0 0 0 0 0

−P3 0 0 −P5 0
0 0 0 0 0






,

Π22 =







Π6,6 0 0 Π6,9 P2

∗ Π7,7 0 0 0
∗ ∗ Π8,8 0 0
∗ ∗ ∗ −2αP6 P4

∗ ∗ ∗ ∗ Π10,10






,

Π1,1 = −AP1 − P1A
T
+B1B1 +BT

1 B
T
1 +R1

+R2 +BTU2B + P2 + P T
2 + h2P4

−e−2αh1Q1 − 0.5e−2αh2Q2 + dQ3

+dHTUH − e−4αh1(W1 +W T
1 )

−e−4αh2(Z1 + ZT
1 +W2 +W T

2 )

−e−4αh2(W3 +W T
3 ) + h2P

T
4

−2αP1 + F TU2F,

Π1,2 = e−2αh1Q1,Π1,4 = −P2 + e−2αh2Q2,

Π1,5 = 2h−1
1 e−2αh1W1,Π1,6 = P3 − P4

+h2P
T
5 + 2h−1

2 e−4αh2(W2 +W3)

−2αP2,Π1,7 = 2h−1
12 e

−4αh2Z1,

Π1,9 = P5 + h2P6 − 2αP4,

Π2,2 = −e−2αh1(R1 +Q1)− e−2αh2Z2,

Π2,3 = e−2αh2(Z2 − Z3), Π2,4 = e−2αh2Z3,

Π3,3 = −e−2αh2(Z2 + ZT
2 ) + e−2αh2(Z3 + ZT

3 )

+GTCTU3CG+GTU3G,

Π3,4 = e−2αh2(Z2 − Z3),

Π4,4 = −e−2αh2(Z2 +R2 +Q2),

Π5,5 = −h−2
1 e−4αh1(W1 +W T

1 ),

Π6,6 = −P5 − P T
5 − 2αP3 − h−2

2 e−4αh2W2,

−h−2
2 e−4αh2(W T

2 +W3 +W T
3 ),
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Π7,7 = −h−2
12 e

−4αh2(Z1 + ZT
1 ),

Π8,8 = −d−1e−2αdQ3,

Π10,10 = −1.5R1 + h21Q1 + h22Q2 + h212Z2

+h12h2Z1 + h1W1 + h2W2 + h2W3

Ξ1(4,4) = −2de−2αdU, Ξ1(5,5) = −4e−2ατS1,

Ξ1(6,6) = −2d1e
−2αd1S2, Ξ2(4,4) = −2de−2αdU,

Ξ2(5,5) = −4e−2ατS1, Ξ2(6,6) = −2d1e
−2αd1S2,

N = e−2ατBT
1 S1B1 + dBT

1 S2B1 +BT
1 S3B1.

Moreover, stabilizing feedback control is given by

u(t) = B1P
−1
1 x(t), t ≥ 0,

and the solution of the system satisfies

||x(t, φ)|| ≤

√

λ2

λ1
||φ||ce

−αt, t ≥ 0.

Proof: Choosing the Lyapunov-Krasovskii func-
tional candidate as (7). It is easy to check that

λ1||x(t)||
2

≤ V (t, xt), ∀t ≥ 0, (12)
and V (0, x0) ≤ λ2||φ||

2
c .

We take the time-derivative of Vi(xt) along the solu-
tions of system (3)

V̇1(xt) = −2xT (t)AP1x(t) + 2xT (t)BT
1 B1x(t)

+2fT
(x(t))BTP1x(t) + 2wT

(t)ET

×P1x(t) + 2uT (t− τ(t))BT
2 P1x(t)

+2gT (x(t− h(t)))CTP1x(t)

+2

(

∫ t

t−d(t)
h(x(s))ds

)T

DTP1x(t)

+2

(

∫ t

t−d1(t)
u(s)ds

)T

BT
3 P1x(t)

+2xT (t)P2[x(t)− x(t− h2)]

+2

(
∫ t

t−h2

x(s)ds

)T

P2ẋ(t)

+2[x(t)− x(t− h2)]
TP3

∫ t

t−h2

x(s)ds

+2xT (t)P4[h2x(t)−

∫ t

t−h2

x(s)ds]

+2

(
∫ 0

−h2

∫ t

t+s

x(θ)dθds

)T

P4ẋ(t)

+2

(
∫ t

t−h2

x(s)ds

)T

P5[h2x(t)

−

∫ t

t−h2

x(s)ds] + 2[x(t)− x(t− h2)]
T

×P5

∫ 0

−h2

∫ t

t+s

x(θ)dθds+ 2[h2x(t)

−x(t− h2)]
TP6

∫ 0

−h2

∫ t

t+s

x(θ)dθds,

V̇2(xt) = xT (t)R1x(t)− e−2αh1xT (t− h1)

×R1x(t− h1)− 2αV2,

V̇3(xt) = xT (t)R2x(t)− e−2αh2xT (t− h2)

×R2x(t− h2)− 2αV3,

V̇4(xt) ≤ h21ẋ
T
(t)Q1ẋ(t)− h1e

−2αh1

∫ t

t−h1

ẋT (s)

×Q1ẋ(s)ds− 2αV4,

V̇5(xt) ≤ h22ẋ
T
(t)Q2ẋ(t)− h2e

−2αh2

∫ t

t−h2

ẋT (s)

×Q2ẋ(s)ds− 2αV5,

V̇6(xt) ≤ h212ẋ
T
(t)Z2ẋ(t)− h12e

−2αh2

∫ t−h1

t−h2

ẋT (s)Z2ẋ(s)ds− 2αV6,

V̇7(xt) ≤ dhT (x(t))Uh(x(t)) − e−2αd

∫ t

t−d

×hT (x(s))Uh(x(s))ds − 2αV7,

V̇8(xt) ≤ d1u
T
(t)S2u(t)− e−2αd1

∫ t

t−d1

uT (s)

×S2u(s)ds− 2αV8, (13)

V̇9(xt) ≤ τ2u̇T (t)S1u̇(t)− τe−2ατ

∫ t

t−τ

u̇T (s)

×S2u̇(s)ds− 2αV9,

V̇10(xt) ≤ h12h2ẋ
T
(t)Z1ẋ(t)− e−4αh2

∫

−h1

−h2

∫ t

t+θ

ẋT (u)Z1ẋ(u)dudθ − 2αV10,

V̇11(xt) ≤ h1ẋ
T
(t)W1ẋ(t)− e−4αh1

∫ 0

−h1

∫ t

t+τ

ẋT (s)W1ẋ(s)dsdτ − 2αV11,

V̇12(xt) ≤ h2ẋ
T
(t)W2ẋ(t)− e−4αh2

∫ 0

−h2

∫ t

t+τ

ẋT (s)W2ẋ(s)dsdτ − 2αV12,

V̇13(xt) ≤ h2ẋ
T
(t)W3ẋ(t)− e−4αh2

∫ 0

−h2

∫ t

t+τ

ẋT (s)W3ẋ(s)dsdτ − 2αV13,
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V̇14(xt) ≤ dxT (t)Q3x(t)− e−2αd

∫ t

t−d

xT (s)

Q3x(s)ds− 2αV14.

By Lemma 3 and Lemma 4, we have

2fT
(x(t))BTP1x(t)

≤ xT (t)F TP1U
−1
2 P1Fx(t)

+xT (t)BTU2Bx(t),

2gT (x(t− h(t)))CTP1x(t)

≤ xT (t− h(t))GTCTU3CGx(t− h(t))

+xT (t)P1U
−1
3 P1x(t),

2wT
(t)ETP1x(t)

≤

γ

2
wT

(t)w(t) +
2

γ
xT (t)P1E

TEP1x(t),

2uT (t− τ(t))BT
2 P1x(t)

≤

e−2ατ

4
uT (t− τ(t))S1u(t− τ(t)) (14)

+4e2ατxT (t)P1B2S
−1
1 BT

2 P1x(t),

2

(

∫ t

t−d(t)
h(x(s))ds

)T

DTP1x(t)

≤

e−2αd

2

∫ t

t−d

hT (x(s))Uh(x(s))ds

+2de2αdxT (t)P1DU−1DTP1x(t),

2

(

∫ t

t−d1(t)
u(s)ds

)T

BT
3 P1x(t)

≤

e−2αd1

2

∫ t

t−d1

uT (s)S2u(s)ds

+2d1e
2αd1xT (t)P1B3S

−1
2 BT

3 P1x(t),

dhT (x(t))Uh(x(t)) ≤ dxT (t)HUHx(t),

d1u
T
(t)S2u(t) = d1x

T
(t)P−1

1 BT
1

×S2B1P
−1
1 x(t),

τ2u̇T (t)S1u̇(t) = τ2ẋT (t)P−1
1 BT

1

×S1B1P
−1
1 ẋ(t),

and the Leibniz-Newton formula gives

−τe−2ατ

∫ t

t−τ

u̇T (s)S2u̇(s)ds

≤ −τ(t)e−2ατ

∫ t

t−τ(t)
u̇T (s)S2u̇(s)ds

≤ −e−2ατ

(

∫ t

t−τ(t)
u̇(s)ds

)T

×S2

(

∫ t

t−τ(t)
u̇(s)ds

)

≤ −e−2ατuT (t)S1u(t) + 2e−2ατuT (t)S1u(t)

+
e−2ατ

2
uT (t− τ(t))S1S

−1
1 S1u(t− τ(t))

−e−2ατuT (t− τ(t))S1u(t− τ(t))

= e−2ατxT (t)P−1
1 BT

1 S1B1P
−1
1 x(t)

−

e−2ατ

2
uT (t− τ(t))S1u(t− τ(t)). (15)

Denote

σ1(t) =

∫ t−h(t)

t−h2

ẋ(s)ds,

σ2(t) =

∫ t−h1

t−h(t)
ẋ(s)ds. (16)

Next, when 0 < h1 < h(t) < h2, we have

∫ t−h1

t−h2

ẋT (s)Z2ẋ(s)ds

=

∫ t−h(t)

t−h2

ẋT (s)Z2ẋ(s)ds

+

∫ t−h1

t−h(t)
ẋT (s)Z2ẋ(s)ds.

Using Lemma 4 gives

h12

∫ t−h(t)

t−h2

ẋT (s)Z2ẋ(s)ds

≥

h12

h2 − h(t)

(

∫ t−h(t)

t−h2

ẋ(s)ds

)T

×Z2

∫ t−h(t)

t−h2

ẋ(s)ds

=
h12

h2 − h(t)
σT
1 (t)Z2σ1(t).

Similarly, we have

h12

∫ t−h1

t−h(t)
ẋT (s)Z2ẋ(s)ds

≥

h12

h(t)− h1
σT
2 (t)Z2σ2(t),
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then

h12

∫ t−h1

t−h2

ẋT (s)Z2ẋ(s)ds

≥

h12

h2 − h(t)
σT
1 (t)Z2σ1(t) +

h12

h(t)− h1
σT
2 (t)Z2σ2(t)

= σT
1 (t)Z2σ1(t) +

h(t)− h1

h2 − h(t)
σT
1 (t)Z2σ1(t)

+σT
2 (t)Z2σ2(t) +

h2 − h(t)

h(t)− h1
σT
2 (t)Z2σ2(t). (17)

By reciprocally convex with a =
h2−h(t)

h12
, b =

h(t)−h1

h12
, the following inequality holds:

[ √

b
a
σ1(t)

−

√

a
b
σ2(t)

]T
[

Z2 Z3

ZT
3 Z2

]

[ √

b
a
σ1(t)

−

√

a
b
σ2(t)

]

≥ 0, (18)

which implies

h(t)− h1

h2 − h(t)
σT
1 (t)Z2σ1(t) +

h2 − h(t)

h(t)− h1
σT
2 (t)Z2σ2(t)

≥ σT
1 (t)Z3σ2(t) + σT

2 (t)Z
T
3 σ1(t). (19)

Then, we can get from (16)-(19) that

h12

∫ t−h1

t−h2

ẋT (s)Z2ẋ(s)ds

≥ σT
1 (t)Z2σ1(t) + σT

2 (t)Z2σ2(t)

+σT
1 (t)Z3σ2(t) + σT

2 (t)Z
T
3 σ1(t).

Thus

− e−2αh2h12

∫ t−h1

t−h2

ẋT (s)Z2ẋ(s)ds

≤ −e−2αh2 [x(t− h(t)) − x(t− h2)]
T

×Z2[x(t− h(t)) − x(t− h2)]

−e−2αh2 [x(t− h1)− x(t− h(t))]T

×Z2[x(t− h1)− x(t− h(t))]

−e−2αh2 [x(t− h(t)) − x(t− h2)]
T

×Z3[x(t− h1)− x(t− h(t))]

−e−2αh2 [x(t− h1)− x(t− h(t))]T

×ZT
3 [x(t− h(t)) − x(t− h2)]. (20)

By using Lemma 4 and Lemma 5 and the following
identity relation:

0 = −2ẋTR1ẋ(t)− 2ẋTR1Ax(t) + 2ẋTR1Bf(x(t))

+2ẋTR1Cg(x(t− h(t))) + 2ẋTR1D

×

∫ t

t−d(t)
h(x(s))ds + 2ẋTR1Ew(t)

+2ẋTR1B1u(t) + 2ẋTR1B2u(t− τ(t))

+2ẋTR1B3

∫ t

t−d1(t)
u(s)ds. (21)

and from (14)-(21), we obtain

V̇ (t, xt) + 2αV (t, xt)

≤ γwT
(t)w(t) + ξT (t)M1ξ(t) + ẋT (t)M2ẋ(t)

+xT (t)M3x(t) + ẋT (t)M4ẋ(t)

−xT (t)
[

AT
1 A1 +AT

1 C1B1P
−1
1 + P−1

1 BT
1 C

T
1 A1

+P−1
1 BT

1 C
T
1 B1P

−1
1

]

x(t)

−2xT (t)
[

AT
1 B4 + P−1

1 BT
1 C

T
1 B4

]

x(t− h(t))

−2xT (t)
[

AT
1 D1 + P−1

1 BT
1 C

T
1 D1

]

∫ t

t−d

x(s)ds

−2xT (t)
[

AT
1 E1 + P−1

1 BT
1 C

T
1 E1

]

w(t)

−xT (t− h(t))BT
4 B4x(t− h(t))

−2xT (t− h(t))BT
4 D1

∫ t

t−d

x(s)ds

−2xT (t− h(t))BT
4 E1w(t)

−

(

∫ t

t−d

x(s)ds
)T

DT
1 D1

∫ t

t−d

x(s)ds

−2

(

∫ t

t−d

x(s)ds
)T

DT
1 E1w(t)

−wT
(t)ET

1 E1w(t), (22)

where

M1 = Π+ F TP1U
−1
2 P1F + P1U

−1
3 P1

+2de2αdP1DU−1DTP1

+4e2ατP1B2S
−1
1 BT

2 P1

+2d1e
2αd1P1B3S

−1
2 BT

3 P1 +
2

γ
P1E

TEP1,

M2 = −0.4R1 +R1BU−1
2 BTR1

+R1CU−1
3 CTR1 + 2de2αdR1DU−1DTR1

+4e2ατR1B2S
−1
1 BT

2 R1 +
2

γ
R1E

TER1

+2d1e
2αd1R1B3S

−1
2 BT

3 R1 +R1B1S
−1
3 BT

1 R1,

M3 = −0.5e−2αh2Q2 + dP−1
1 BT

1 S2B1P
−1
1

+e−2ατP−1
1 BT

1 S1B1P
−1
1 + P−1

1 B1S3B1P
−1
1 ,

(23)
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M4 = −0.1R1 + τ2P−1
1 BT

1 S1B1P
−1
1 ,

ξT (t) =

[

xT (t) xT (t− h1) x
T
(t− h(t)) xT (t− h2)

∫ t

t−h1

xT (s)ds

∫ t

t−h2

xT (s)ds

∫ t−h1

t−h2

xT (s)ds

∫ t

t−d

xT (s)ds

∫ 0

−h2

∫ t

t+s

xT (θ)dθds ẋT (t)
]

.

Using Schur complement lemma, pre-multiplying and
post-multiplying M1, M2, M3 and M4 by P1 and P1

respectively, the inequality M1, M2, M3 and M4 are
equivalent to Ξ1 < 0, Ξ2 < 0, Ξ3 < 0 and Ξ4 < 0

respectively, and from the inequality (22) it follow that

V̇ (t, xt) + 2αV (t, xt)

≤ γwT
(t)w(t) − xT (t)

[

AT
1 A1 +AT

1 C1B1P
−1
1

+P−1
1 BT

1 C
T
1 A1 + P−1

1 BT
1 C

T
1 B1P

−1
1

]

x(t)

−2xT (t)
[

AT
1 B4 + P−1

1 BT
1 C

T
1 B4

]

x(t− h(t))

−2xT (t)
[

AT
1 D1 + P−1

1 BT
1 C

T
1 D1

]

∫ t

t−d

x(s)ds

−2xT (t)
[

AT
1 E1 + P−1

1 BT
1 C

T
1 E1

]

w(t)

−xT (t− h(t))BT
4 B4x(t− h(t))

−2xT (t− h(t))BT
4 D1

∫ t

t−d

x(s)ds

−2xT (t− h(t))BT
4 E1w(t)

−

(

∫ t

t−d

x(s)ds
)T

DT
1 D1

∫ t

t−d

x(s)ds

−2

(

∫ t

t−d

x(s)ds
)T

DT
1 E1w(t)

−wT
(t)ET

1 E1w(t). (24)

Letting w(t) = 0, we obtain from the inequality (24)
that

V̇ (t, xt) + 2αV (t, xt) ≤ 0,

we have,

V̇ (t, xt) ≤ −2αV (t, xt), ∀t ≥ 0. (25)

Integrating both sides of (25) from 0 to t , we obtain

V (t, xt) ≤ V (0, x0)e
−2αt, ∀t ≥ 0.

Taking the condition (12) into account, we have

λ1||x(t)||
2
≤ V (t, xt) ≤ V (0, x0)e

−2αt

≤ λ2||φ||
2
ce

−2αt.

Then, the solution ||x(t, φ)|| of the system (3) satisfy

||x(t, φ)|| ≤

√

λ2

λ1
||φ||ce

−αt, ∀t ≥ 0, (26)

which implies that the zero solution of the closed-loop
system is α−stable. To complete the proof of the the-
orem, it remains to show the γ−optimal level condi-
tion (ii). For this, we consider the following relation:

∫ t

0
||z(s)||2 − γ||w(s)||2]ds

=

∫ t

0
[||z(s)||2 − γ||w(s)||2 + V̇ (s, xs)]ds

−

∫ t

0
V̇ (s, xs)ds.

Since V (t, xt) ≥ 0, we obtain

−

∫ t

0
V̇ (s, xs)ds = V (0, x0)− V (t, xt) ≤ V (0, x0).

Therefore, for all t ≤ 0

∫ t

0
||z(s)||2 − γ||w(s)||2]ds (27)

≤

∫ t

0
[||z(s)||2 − γ||w(s)||2 + V̇ (s, xs)]ds

+V (0, x0).

From (24) and the value of ||z(t)||2 we obtain
∫ t

0
||z(s)||2 − γ||w(s)||2]ds (28)

≤

∫ t

0

[

− 2αV (t, xt)
]

ds+ V (0, x0).

Hence, from (28) it follows that
∫ t

0
||z(s)||2 − γ||w(s)||2]ds ≤ V (0, x0) ≤ λ2||φ||

2
c ,

equivalently,
∫ t

0
||z(s)||2dt ≤

∫ t

0
γ||w(s)||2]ds+ λ2||φ||

2
c .

Letting t → ∞, and setting c0 =
λ2
γ

, we obtain that
∫

∞

0 ||z(t)||2dt

c0||φ||2c +
∫

∞

0 ||w(t)||2dt
≤ γ,

for all non-zero w(t) ∈ L2([0,∞],Rn), φ(t) ∈

C[[−̺, 0],Rn]. This completes the proof of the the-
orem. ⊓⊔
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4 Numerical Examples

In this section, numerical example is given to present
the effectiveness and applicability of our stability re-
sults.

Example 8. Consider neural network (3) with param-
eters as follows:

A =

[

4 0

0 4

]

, B =

[

−0.7 0.2

0.4 −0.1

]

,

C =

[

0.7 −0.8

0.5 −0.9

]

, D =

[

0.7 −0.7

−0.1 −0.4

]

,

E =

[

−0.1 0.2

0 0.4

]

, F =

[

0.5 0

0 0.3

]

,

G =

[

0.5 0

0 0.4

]

, H =

[

0.4 0

0 0.2

]

,

A1 =

[

−0.2 0.3

0 −0.4

]

, B1 =

[

−0.4 0

0 −0.4

]

,

B2 =

[

0.1 0

0 0.1

]

, B3 =

[

0.1 0

0 0.1

]

,

B4 =

[

−0.4 0

−0.1 −0.5

]

, C1 =

[

0.2 0.1

0 −0.5

]

,

D1 =

[

0.2 0.1

0 −0.4

]

, E1 =

[

0.1 0

0.1 0.3

]

,

I =

[

1 0

0 1

]

, h(·) = tanh(·)

f(·) = g(·) = 0.2

[

|x1(t) + 1| − |x1(t)− 1|

|x2(t) + 1| − |x2(t)− 1|

]

,

From the conditions (8)-(11) of Theorem 7, we letα =

0.01, h1 = 0.1, h2 = 0.3, d = 0.3, d1 = 0.5, and
τ = 0.4. By using the LMI Toolbox in MATLAB, we
obtain γ = 1.7637,

P1 =

[

0.9248 −0.1581
−0.1581 0.7921

]

, P2 =

[

0.0948 −0.0501
−0.0521 0.1187

]

,

P3 =

[

−0.3225 0.0156
0.0156 −0.3867

]

, P4 =

[

0.0011 −0.0006
−0.0006 0.0013

]

,

P5 =

[

−0.0020 −0.0002
−0.0001 −0.0028

]

, P6 =

[

0.0146 −0.0020
−0.0020 0.0161

]

,

Q1 =

[

0.5107 −0.0462
−0.0462 0.5004

]

, Q2 =

[

0.4714 −0.0328
−0.0328 0.5166

]

,

S2 =

[

0.8199 −0.0161
−0.0161 0.8399

]

, R1 =

[

0.1392 −0.0521
−0.0521 0.1790

]

,

R2 =

[

0.4409 −0.0481
−0.0481 0.4248

]

, S1 =

[

0.2493 −0.0177
−0.0177 0.2606

]

,

0 2 4 6 8 10
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−0.08

−0.06

−0.04

−0.02

0
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0.04
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0.08

0.1
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t)

 

 
x

1
(t)

x
2
(t)

Figure 1: Response solution of the system (3) where
w(t) = 0

S3 =

[

0.5445 −0.0353
−0.0353 0.6032

]

, Q3 =

[

0.4332 0.0043
0.0043 0.4422

]

,

W2 =

[

0.0518 −0.0083
−0.0083 0.0582

]

, U =

[

1.5450 0
0 1.5450

]

,

W3 =

[

0.0203 −0.0007
−0.0007 0.0207

]

, U2 =

[

1.0492 0
0 1.0492

]

,

Z1 =

[

0.0349 −0.0002
−0.0002 0.0353

]

, U3 =

[

0.9085 0
0 0.9085

]

,

Z2 =

[

0.8015 −0.1874
−0.1874 0.8118

]

, Z3 =

[

0.2777 0.0028
0.0028 0.3139

]

,

W1 = 10
−3
[

7.4622 −0.0421
−0.0421 7.5146

]

,

The feedback control is given by

u(t) = B1P
−1
1 x(t) =

[

−0.4478 −0.0894

−0.0894 −0.5228

]

, t ≥ 0,

Moreover, the solutionx(t, φ) of the system satisfies

||x(t, φ)|| ≤ 1.2300e−0.01t
||φ||c.

Figure 1 shows the response solution x(t) of the
neural network system (3) where w(t) = 0 and the
initial condition φ(t) = [−0.1 0.1]T .

Figure 2 shows the response solution x(t) of the
neural network system (3) where w(t) is Gaussian
noise with mean 0 and variance 1 and the initial con-
dition φ(t) = [−0.1 0.1]T .

5 Conclusions

In this paper, the problem of a H∞ control for a neural
network systems with interval and distributed time-
varying delays was investigated. It is assumed that
the interval and distributed time-varying delays are
not necessary to be differentiable. Firstly, we consid-
ered an H∞ control for exponential stability of neural
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Figure 2: Response solution of the system (3)

network with interval and distributed time-varying de-
lays via hybrid feedback control. Secondly, by using
a novel LyapunovKarsovskii functional, the employ-
ment of a tighter bounding technique, some slack ma-
trices and newly introduced convex combination con-
dition in the calculation, improved delay-dependent
suff cient conditions for the H∞ control with expo-
nential stability of the system are obtained. Finally, a
numerical example has been given to illustrate the ef-
fectiveness of the proposed method. The results in this
paper improve the corresponding results of the recent
works.
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