Charuwat Chantawat,
WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Thongchai Botmart, Wajaree Weera

New analysis onH, control for exponential stability of neural
network with mixed time-varying delays via hybrid feedback

control
CHARUWAT CHANTAWAT THONGCHAI BOTMART* WAJAREE WEERA
Khon Kaen University Khon Kaen University University of Phayao
Department of Mathematics Department of Mathematics Department of Mathematics
Khon Kaen 40002, THAILAND  Khon Kaen 40002, THAILAND Phayao 56000, THAILAND
charuwat_c@kkumail.com thongbo@kku.ac.th wajaree.we@up.ac.th

*Corresponding author

Abstract: This paper is concerned the problem of H ., control for neural networks with mixed time-varying delays
which comprising different interval and distributed time-varying delays via hybrid feedback control. The interval
and distributed time-varying delays are not necessary to be differentiable. The main purpose of this research is to
estimate exponential stability of neural network with H, performance attenuation level . The key features of the
approach include the introduction of a new Lyapunov-Krasovskii functional with triple integral terms, the employ-
ment of a tighter bounding technique, some slack matrices and newly introduced convex combination condition
in the calculation, improved delay-dependent suff cient conditions for the H., control with exponential stability
of the system are obtained in terms of linear matrix inequalities (LMIs). The results of this paper complement
the previously known ones. Finally, a numerical example is presented to show the effectiveness of the proposed
methods.
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1 Introduction problem of H, control design usually leads to solving
an algebraic Lyaponov equation. It should be noted
During the past decades, the problem of the reliable that some works have been dedicated to the problem
control has received much attention [1,3,11,12]. Neu- of reliable control for nonlinear systems with time-
ral networks have received considerable due to the ef- varying delay [3, 11, 12]. However, to the best of the
fective use of many aspects such as signal process- authors knowledge, so far the research on reliable H
ing, automatic control engineering, associative mem- control is still an open problem, which is worth further
ories, parallel computation, fault diagnosis, combi- investigation.
natorial optimization and pattern recognition and so
on [5,13,14]. It has been shown that the presence of Motivated by above discussion, in this paper we
time delay in a dynamical system is often a primary have considered the problem of H, control for neural
source of instability and performance degradation [6]. networks with mixed time-varying delays which com-
Many researchers have paid attentions to the problem prising different interval and distributed time-varying
of stability for systems with time delays [8,9]. The delays via hybrid feedback control. The interval and
H controller can be used to guarantee closed loop distributed time-varying delays are not necessary to
system not only a stability but also an adequate level be differentiable. The main purpose of this research
of performance. In practical control systems, actu- is to estimate exponential stability of neural network
ator faults, sensor faults or some component faults with H,, performance attenuation level v. The key
may happen, which often lead to unsatisfactory per- features of the approach include the introduction of
fOITnanCC, cven IOSS Of stablhty Therefore, research a hew LyapunOV_Krasovskii functional with trlple in-
on reliable control is necessary. tegral terms, the employment of a tighter bounding
Most of the works have been focused on the prob- technique, some slack matrices and newly introduced
lem of designing a H., controller that stabilizes lin- convex combination condition in the calculation, im-
ear systems with time-varying. Also, it is assumed proved delay-dependent suff cient conditions for the
that the perfect information is available for state feed- H, control with exponential stability of the system
back and the controlled output is disturbance free. The are obtained in terms of linear matrix inequalities
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(LMIs). The results of this paper complement the pre-
viously known ones. Finally, a numerical example is
presented to show the effectiveness of the proposed
methods.

The rest of this paper is organized as follows. In
Section 2 , some notations, def nitions and some well-
known technical lemmas are given. Section 3 presents
the H, control for exponential stability and the H,
control for exponential stability. The numerical exam-
ples and their computer simulations are provided in
Section 4 to indicate the effectiveness of the proposed
criteria. Finally, the paper is concluded in Section 5.

2 Definitions of Function Spaces and

Notation

Notations

The following notation will be used in this
paper: R” denotes the n—dimensional space. A’
denotes the transpose of matrix A, A is symmet-
ric if A = AT, A\(A) denotes all the eigenvalue
of A, Anax(A) = max{Re X : X € \A4)},
Amin(4) = min{Re A : X € ANA)}, A > 0 or
A < 0 denotes that the matrix A is a symmetric and
positive defnite or negative def nite matrix. If A, B
are symmetric matrices, A > B means that A — B is
positive def nite matrix, I denotes the identity matrix
with appropriate dimensions. The symmetric term
in the matrix is denoted by *. The following norms
will be used: || - || refer to the Euclidean vector norm;
[|@llc = supye[—p,0) [|#(t)|] stands for the norm of a

function ¢(-) € C[[—p, 0], R"].

Consider the following neural network system
with mixed time delays

i(t) = —Az(t)+ Bf(z(t)) + Cg(z(t — h(t)))
+D " h(xz(s))ds + Ew(t) + % (t),

z(t) = Ajz(t) + Bax(t — h(t)) + Cru(t) (1)
+D; /t_d(t) z(s)ds + Eyw(t),

ot) = 6t), tel-o.0],

where z(t) € R" is the state vector, w(t) € R" the
deterministic disturbance input, z(t) € R"™ the sys-
tem output, f(x(t)), g(x(t)), h(x(t)) the neuron acti-
vation function, A = diag{as,...,a,} > 0 a diag-
onal matrix, B,C, D, E, Ay, B4,Cy, Dy, Eq are the
known real constant matrices with appropriate dimen-
sions, ¢(t) € C[[—p, 0], R"] the initial function, The
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state hybrid feedback controller 7 (t) satisf es:

w(t) = Biu(t)+ Bau(t —7(t))

t
+Bs / u(s)ds,
t—dl(t)

where u(t) = Kx(t) and K is a constant matrix con-
trol gain, B, By, B3 are the known real constant ma-
trices with appropriate dimensions. Then, substituting
it into (1), it is easy to get the following:

2

#(t) = [-A+ B1K]z(t)+ Bf(z(t)) + Fw(t)
+Cg(x(t — h(t)))+ D . h(z(s))ds
+ByKx(t — 7(t)) + BsK t o x(s)ds,

t—dy (t

z2(t) = [A1+ C1K]x(t) + Bax(t — h(t)) (3)
Dy /t 6+ B,

x(t) = o), tel-o0]

where the time-varying delays function h(t), 7(t),
d(t) and d; (t) satisfy the condition

0 < hy < h(t) < hy,
0<7(t) <,

0 <d(t) <d,
where hy, ho, 7, d, di, 0 = max{hy,7,d,d1}
are known real constant scalars and we denote

In this paper, we consider activation functions
f(), g(+) and h(-) satisfy Lipschitzian with the Lip-

N

schitz constants f;, g; and h; > O:

\fila1) = fi(z2)| < filz1 — 22,
lgi(x1) — gi(x2)| < gilx1 — 2], (5)
|hi(z1) — hi(x2)| < hilz1 — 22,
1=1,2,....,m, Vri,z9 €R,
and we denote that
F = diag{f;,i=1,2,...,n},
G = diag{gi7i:1727"'7n}7 (6)
H = diag{hi,i=1,2,..,n}.

Definition 1. [10]. Givena > 0. The zero solution
of system (1), where(t) = 0, w(t) = 0, is a—stable
if there is a positive numbeN > 0 such that every
solution of the system satisfies

|z(t, d)|| < N||¢p|lce™, Vt<O0.
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Definition 2. [10]. Givena > 0,y > 0. The H 3 Stability analysis
control problem for system (1) has a solution if there

exists a memoryless state feedback contraligy = In this section, we will present stability criterion for
Kz(t) satisfying the following two requirements: system (3).
(i) The zero solution of the closed-loop system, where Consider a Lyapunov-Krasovskii functional candidate
w(t) =0, as
bi(t) = —Aux(t) + Bf((t)) + Cgla(t — (1)) V(t, ) ZV (t,0), %)
t
+D ) h(z(s))ds + % (t), where
t
is o—stable. Vi) = ol (t)Pia(t) + 227 (1) Py / w(s)ds
(i4) There is a numbet, > 0 such that . o t=h
+</ :E(s)ds) P3/ x(s)ds
fo ||2(t)]|?dt - t—ho t—ha
sup Vs
col 112 + J5~ uw )Pt 1227 (1) Py / / 6)dbds
ho Jt+s
where the supremum is taken over al(t) €
C[[—0,0],R"] and the non-zero uncertainty(t) € +2(/t . (s )ds) Ps
Lo ([0, 00], R™). °
x/ / dOds
Lemma 3. [4]. (Cauchy inequality) For any symmet- —ha Ji+s
ric positive definite matrixv € M™*" andz,y € R" 0 t T
we have / / dfds
ho +s
0t
227y < 2" Nz +y"' Ny, x P / / 2(0)d0ds,
ho +s
. . _ . t
Lemma 4. [4]. Given a positive definite matrix _ / 2a(s—t),.T
Z € R™", and two scalar) < r; < rp and vec- V(1) ¢ hle v (s)Baw(s)ds,
tor functionz : [r1, 2] — R™ such that the following t
integrations concerned are well defined, then we have Vi (z;) = / eza(s_t)ﬂjT(S)Rgfﬂ(S)ds,
t h2
" T " (01 5,
(/ w(s)ds) Z(/ x(s)ds) Vi(zy) = T(0)Q,4(0)dbds,
1 r1 —hy +S
T2
< (ra—m) / 27 (5) Z2(s)ds. V(z) = ho / / a0-0) 3 (90 (0)d0ds,
[ ho Jt+s

Lemma 5. [7]. For any positive definite symmetric ~ Ve(2t) = h12/ / > 0137 (9)
constant matrix” and scalarr > 0, such that the trs
following integrations are well defined x Zy(6)dbds,

Ny 2 i) = [ /+s OO (2(0))
—r Jt46

< -
5)dsd? < Uh(2(0))d0ds,
/ / x(s)dsd@ / / dsd9 Ve(zy) = / / A=, T(9)Sou(h)dbds,
—7 Jt+0 —7 Jt+60 d1 Jt+s
Lemma 6. [4]. (Schur complement) Given con-  Vo(zt) = /_ /+ e 20047 (9)S1u(0)dods,

stant matrices?,, Z», Z3 whereZ; = Z{ and 7, =
Z¥ > 0. ThenZ, + z¥Z;'Z3 < 0 if and only if Vio(z:) = / / / e2o0+u=t)5T (g)
[ 7z ZF Z3 t+u

— 42
Zy —7 ] =oor [ 7T 7 ] <0 < Z,3(6)dbduds,
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0 0 rt [ —04R; RiB RiC 2dR;D
Vir(z) = / / / 20—t 5T () = B L S o 0
h1 t+s —=2(1,1) — * x  —Us 0 )
x Whx(0)dOdsdr, L * * S20409)
[ 4R1Bs 2diRiB3 RiB1 R.E
_ p20(0+s—1) = 0 0 0 0
Viz(ar) = /hz/ /+s "0t 0) =2(1,2) = 0 0 0 0 ’
0 0 0 0
x Woi(0)dOdsdr, -
Za(5.5) 0 0 0
Vis(ze) = / / / 2o (0+s=t) i1 (0) Eo22) = : :2(5’6) _(393 8 )
ha t+s L * * * —0.5vy
XWgI‘ d@deT o - |: M1 o ] <0
o *  Ilag ’
V14(‘Tt) / / 2a(€ t )ng( )d@ds [ Hl,l H1,2 0 H1,4 H1,5 T
t+s * IIo o 1II23 Il24 0
Let us set M = . . Hi’g gii (0] 7
L * * * * II5 5
At = Amin(P1), [T Iz 0 Ihig —-ATRy T
)\2 - 3h%)\max(®) + hl)\max(Rl) + h%)\max(Ql) H12 _ 8 8 8 8 8
+(ha — h1)*Amax(Z2) + A Amax(HTUH) ~Ps 0 0 -P5 0 ’
2 —1 T —1 L o 0 0 0 0o |
+d1)\max(P1 Bl 52B1P1 ) [ II6,6 0 0 11,9 P,
+T2)\max(P1_lB%151Blpl_1) I * 17,7 1‘[0 8 8
22 pr— * * 8,8 5
+(hy — h1)h3Amax(Z1) + W3 Amax(W1) <+ x mR R
+h%)\max(W2) + d2)\max(Q3)- - * * 1010
Theorem 7. Givena > 0, The H,, control of sys-
tem (3) has a solution if there exist symmetric positive B T ToT
definite matricesly, Q2, @3, R1, Ra, S1, S2, S3, My = AP —PA + BB+ By By + 1y
W1, Wy, Ws, Zy, Zs, Z3, diagonal matriced/ > 0, +Ry + BTUyB + Py + P{ + haPy
i _ pT _ pT
02> 0l 0, and matioes © BB G, 05 Gy 00
A g FAHTUH — e~ (w4 W)

—em e (Zy 4 2T+ Wa + W)

—e 12 (Wy + WY) + ho Py

—2aP, + FTU,F,

jg z; } <0 ©) My = e2MQuIy=—Py+e>Qy,
s = 2h1_1€_20‘h1W1,H1,6 PP,

—|—h2P5T + 2h2_1€—4ah2(W2 W)

[1]:

1(1,1) 1(1,2) :| < 0, (8)

1(2,2)

[1]
—
Il
L —
*
[1]x [1]2

[1]x

2(1,1)

[1]
)
Il
L —
*
[1] [1]t

=3 = [ —0.5e720h2Qq 4+ N ] <0, (10)
—2aP, 117 = 2h1_21€_4ah2 Z,
E4 _ [ _O0.1R 4+ TZBTS1B1 ] < 07 (11) H1,9 = P5 + h2P6 - 20[P47
h H272 _ _e—2ah1 (Rl + Ql) - e—2ah2 Zs,
where H2,3 _ e—2ah2(Z2 o 23)7 H274 — e—20¢h2 Zs,
B T
= N F_lil I(D)1 2d};1D Mgy = —e 2"2(Zy+2Z]) +e 2"(Z5+ Z3)
e ’ +GTCTU30G + GTUsG,
| = * * Z1(4,4) _ ,—2ahy _
[ 4P1By 2d1P1B3 PE Hzy = e (Z2 = Z3),
Eia2 = 0 0 S My = —e "(Zy+ Ry +Qo),
Lo 0 0 55 = —hyZe MW, +wi),
N IETE 0 Mg = —P5s— Pl —2aP;— hyZe 21y,
= = * = ( s ) 3 —
122) . T oy —hy%eT (WS + Wy + W),
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= _h1_226_4ah2(21 + 1),
H8,8 — —1 —2adQ 3,

o0 = —L15R1+hiQ1 + h3Qs + hiyZs
+hiohoZ1 + hiWi + hoWo + hoW3
S = —2de 2, 55 = —de 275,
Ei6e) = —2die 1Sy, Sy gy = —2de” U,
Eas) = —4e72°7Sy, Sy = —2die NS,
N = e 2"BIS| B, +dB] S2B; + BT S3B;.

Moreover, stabilizing feedback control is given by
u(t) = ByP'x(t), t>0,

and the solution of the system satisfies

lz(t, 9)ll <

22116/, t>0.
2 lle

Proof: Choosing the Lyapunov-Krasovskii func-
tional candidate as (7). It is easy to check that

V(t7xt)7
Xo||o|2.

Mllz@®)|P < V>0, (12)
<

and V(0,x0)

We take the time-derivative of V;(x;) along the solu-
tions of system (3)

Vi(z,) = —22T(t)APx(t) + 227 (t) B Byx(t)

(
+2fT(x(t)) BT Pya(t) 4+ 2w’ () ET
x Prx(t) 4+ 2ut (t — 7(t)) BY Pra(t)
+2g" (a(t — h(t)))CT Pra(t)
. T
/ h(x(s))ds) DT Pya(t)
t—d(t)

. T
T
+2 </t_d1(t) u(s)ds> Bs Pyx(t)

+227 () Paa(t) — 2(t — ha)]

+2 < /t ; x(s)ds)T Poi(t)

Folw(t) — a(t — ho)[T Py / j

Z’T X — t xr\s)as
1207 () Py haya(t) / (e

+2 </_(;2 /t; x(@)d@ds)TP4a'c(t)
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Va(y)

Vz%(xt)

V4(l’t)

V5 (xt)

V(@)

Vr (@)

Vs(xt)

Vg(xt)

Vlo(xt)

Vll(xt)

Vl2(¢t)

‘./13(%)

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN
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T
P5 [hgl‘(t)

+2 ( /t ihQ w(s)ds)

[ oyist 20000 - ot - o)

0t
X Ps / / x(0)dOds + 2[hox(t)
—ho Jt+s

0 t
—2(t — ho)]T Pg / / x(0)dbds,
—ho Jt+s

T (t)Ryx(t) — e 2T (t — hy)
Xle(t — hl) — 2aV2,
a7 (t)Rox(t) — e 22T (t — hy)

XRQ!E(t — h2) — 20[‘/3,
t
T OQ) - et [T
t hl
lex( )ds — 2a/Vy,
t
i (1)Qa(t) hze_zahQ/
t h2
X Qait(s)ds — 20V,

12,57 (1) Zoi (t) — hyge—2h2 /

t—ho

t—hy

i1 () Zoi:(s)ds — 20V,

T o e—2ad
i )b (o) — e [
xhT (2(s))Uh(x(s))ds — 2aVx,

t

dyu® (t)Syu(t) — e~ / u® (s)
t—dy

x Sou(s)ds — 2aVg, (13)

2T (£)Sya(t) — e 207 /tj u’ (s)

x Sat(s)ds — 2aVy,
—h1 t
e—4och2 / /
—ho Jt40

g&T(u)le'( )dudf® — 2aVi,

—4ahy / /
h1 Jt+T1

i1 (s)Whi(s)dsdr — 2aViy,

—4aho / /
ho Jt+T1

i (8)Wai(s)dsdr — 2019,

—4aho / /
ho Jt+T1

i1 (s)Wai(s)dsdr — 2aVis,

hiohod™ () Z1d(t) —

hlfi ( )Wlac

hg(i ( )ng

hg(i ( )Wgw
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Via(z) < dal (1)Qzx(t) — =24 /t 2T (s)

t—d
Qs3z(s)ds — 2aV1y.

By Lemma 3 and Lemma 4, we have

2T (2(t)) BT Pyx(t)

T () FT PU; Py Fa(t)

+2T (t)BT Uy Bx(t),

297 (x(t — h(t)))CT Pra(t)

2Lt — h(t)GTCTUsCGx(t — h(t))
+al (1) PLUS  Pra(t),

2wl (1) ET Pya(t)

%wT(t)w(t) ™ %xT(t)PlETEplx(t)v

IN

IN

IN

2u” (t — 7(t))BL Pra(t)

—2aTr

IN

ul (t — 7(t))Siu(t — 7(t))
+4e2°T 2T (1) Py By Sy BY Pya(t),

; T
T
2 ( /t i h(a:(s))ds) DT Pua(t)

e—2ad t .
2 leh (z(s))Uh(x(s))ds

+2de** T ()P, DU DT Pia(t),

. T
T
2 (/t_dl(t) u(s)ds> Bs Pyx(t)

e—20¢d1 t
/ u® (s)Squ(s)ds
2 t—dy

+2d; €2ad1 l’T(t)Pl BgSz_lBgPL’E(t),

IN

IN

A

dhT (z())Uh(z(t)) < daT(t)HUHz(t),
diu” (t)Sou(t) = dia” (t)P;BY
xSy By P ta(t),

r?ul () Sya(t) = 2T (t) Pt BY
xS1 By P la(t),

and the Leibniz-Newton formula gives

t
—re 20T / u” (s)Sat(s)ds
t

—T

t
< (e / i () Ssii(s)ds
t—7(t)
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. T
—e 20T (/ u(s)ds>
t—7(t)

XS (/ti " ﬂ(s)ds)

—e 27T (1) Syu(t) + 2e7 27l (1) S u(t)
—2at

+ ul (t — 7(t))S1.S7 Shu(t — 7(t))

—e 20Ty (t — 7(t)Syu(t — 7(t))
e‘z‘”:nT(t)Pl_lBlTSlBlelw(t)

e—2aT

2

ul' (t — 7(t))Su(t — 7(t).  (15)

t—h(t)
) = [ s

t—h1
oo(t) = /t z(s)ds. (16)

Next, when 0 < hy < h(t) < hg, we have

t—hy
/t i1 (8) Zyi:(s)ds

—hs

t—h(t)
_ / i (5) Zoii(5)ds
t

—hso

t—h1
+ / iT(s) Zyi(s)ds.
t—h(t)

Using Lemma 4 gives

t—h(t)
hlg / a'cT(s)Zgjc(s)ds
t—ho

T
hio /t—h(t) )
> z(s)ds
s — (D) ( e

t—h(t)
X Zo / x(s)ds
t—ho

o T; ol 2.

Similarly, we have

t—h1
hlg / i’T(S)ZQZ.'(S)dS
t—h(t)

h12 T
> =
> h(t) i o5 (t)ZgUg(t),
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then

i1 () Zod:(s)ds

t—hy
hi2 /
t—ho

hi2
hia — (1)

hig
ht) — I
+ %Uip(ﬂ%m(ﬂ
ha — h(t) ¢
h(t) — hy 2

v

O{(t)ZgO’l(t) + Ug(t)ZQO'Q(t)

o1 (t) Zao (1)

+03 (t) Zyoa(t) + () Zyoa(t).  (17)

hg—h(t) b

By reciprocally convex with a = i

h(tizl—z_hl , the following inequality holds:

T
vo(t) Zy Z boy(t)
[ —\6%;2(25) [ Zs% Zi ] —\/\;%;g(t)

which implies

] > 0,(18)

h(t) —h1 hy —h(t)
T — (D)L h(t) —hy °
> o] (1) Z302(t) + o5 (1) Z1 a1 (1).

(t)ZQO'l(t) + (t)ZQO'Q(t)

(19)

Then, we can get from (16)-(19) that

t—h1
h12 /
t—ho

> O'{(t)ZgUl(t) + Ug(t)ZQO'Q(t)
+ol(t)Zsoo(t) + ol (1) ZT o1 (2).

t—hy
e—2ah2 h12 /
t—ho

—e7 22 [t — h(t)) — x(t — hy)]T
X Zola(t — h(t)) — z(t — hs)]

—e 2h2 (gt — hy) — a(t — h(t)]F
X Zo[x(t — hy) — x(t — h(t))]

—e7 22 [ (t — h(t)) — x(t — hy)]”
X Zs[x(t — hy) — x(t — h(t))]
—e~2h2 (gt — hy) — x(t — h(t))]T
x ZEx(t — h(t)) — z(t — ha)].

i1 () Zoi(s)ds

Thus

i1 (8) Zyi:(s)ds

IN

(20)

By using Lemma 4 and Lemma 5 and the following
identity relation:

0 = —2iTRyi(t) — 26T Ry Ax(t) + 22T RiBf(x(t))

+2¢TR1Cg(x(t — h(t))) + 2T Ry D
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h(z(s))ds + 22T Ry Ew(t)

t
</
t—d(t)

+247 Ry Byu(t) + 2i7 Ry Bou(t — 7(t))

t
+2i" Ry B /
t—d1 (t)

u(s)ds. 21

and from (14)-(21), we obtain

V(t, z¢) + 20V (¢, z¢)
ywl (tw(t) + €7 () AE) + 37 ()i ()
aT ()2 (t) + 7 (t) My (t)
()| AT A+ ATCBiPT 4+ PUBTCT A

IN
+

—X
+PBTCT Blpl—l} x(t)

—227(#) :AITB4 + P;lBchfB4} 2(t — h(t)

) t
—2:T(t)|AT Dy + PlefC?Dl} / x(s)ds
. t—d

—2:T(t)[ATEy + PTYBYCT El} w(t)
—2T(t — h(t)) BT Byx(t — h(t))

—227(t — h(t))BT D /t e

—22T(t — h(t)) BT Byw(t)

( /;dx(s)ds)TplTpl /t_dx(s)ds

-9 ( /tid x(s)ds) TDFiFElw(t)

—w’ (t)E] Byw(t), (22)

where

n+ FPU'PF + PUS Py
+2de**¢ P DU DT Py
+4e**7 Py By ST BI Py
2

+2dye** P B3S; ' BT P+ Z P ETEP,,
gl

My —~0.4R; + RyBU;'BTR,

+R,CU'CT Ry + 2de** Ry DU DT Ry

2
+4e*°T Ry By ST B Ry + ;RlETERl
+2d1e**" Ry B3S; ' BY Ry 4+ Ry B1S; ' BI Ry,
—0.5¢72M2Qy + dP BT Sy B P!

+e TP B S1 B Pt + P B Ss B Pyt
(23)

M3
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~0.1Ry + P BT S B P,
[T () 2Tt~ h1) 27 (¢~ h(t)) 7 (¢~ h)

t t
/ zT(s)ds / zT(s)ds
t—hy t—ho
t—hy t
/ 2T (s)ds / zT(s)ds
t—ho t—d

Lohe

Using Schur complement lemma, pre-multiplying and
post-multiplying .#1, .#5, .#5 and .#4 by P, and P;
respectively, the inequality .41, #5, 5 and .4, are
equivalent to =1 < 0,29 < 0,Z3 < 0and =4 < 0
respectively, and from the inequality (22) it follow that

V(t,x;) + 2V (t, zy)
T (#)w(t) — 27 () [A{Al + ATCy By P

0)ddds &7 (t )}

IN

+P ' BTCT Ay + PO BTCT B PT ] (t)
—227T(t) ATB4+P1 LBTCT By |z (t — h(t))

t
—2x7(t) ATDl —|—Pl_cherirD1} / x(s)ds
. t—d

—25T () [ATEy + PTYBYCT By |w(t)
—2T(t — h(t)) BT Byx(t — h(t))

—.Z'T— T t.Z'SS
2<th@wuxld<w

—227(t — h(t)) BT Eyw(t)

_< /tidx(s)d8>TDipD1 /t idaz(s)ds

-9 ( /t_d x(s)ds) TD{Elw(t)
—wl (t)ET Byw(t). (24)

Letting w(t) = 0, we obtain from the inequality (24)
that
V(t,z) +2aV(t,x) < 0,

we have,

V(t,z;) < —2aV(t,zy), Vt>0. (25)
Integrating both sides of (25) from 0 to ¢ , we obtain

Vit,z)) < V(0,z0)e 2, Vt>0.
Taking the condition (12) into account, we have

Mllz(®)|* < V(E,20) < V(0,20)e”>
< Xofglfee™
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Then, the solution ||z(¢, ¢)|| of the system (3) satisfy

|| (¢, \/ H<z>Hce oVt >0, (26)

which implies that the zero solution of the closed-loop
system is a—stable. To complete the proof of the the-
orem, it remains to show the y—optimal level condi-
tion (77). For this, we consider the following relation:

L/W@W—wwﬂm@
0

t
:”AW@W—WMMPH%JM%
t .
—/ V(s,zs)ds.
0

Since V (¢, z) > 0, we obtain

t
—/ Vs, 2a)ds = V(0,20) — V(b 21) < V(0,20).

0

Therefore, for all ¢t < 0

/ [12()I* = Alw(s)[*)ds
0

< [P ~Allo)? + V21
0
—|—V(0, 33‘0).

@7

From (24) and the value of ||z(t)||? we obtain

/ 12()I* = yllw(s)I*]ds
0

t
< / [—20(‘/(75,33) ds 4+ V (0, ).
0

(28)

Hence, from (28) it follows that

t
/0 121 = Allw(s)l[P]ds < V(0,20) < Aoll9]IZ,

equivalently,

t t
!/W@Wﬁgjwm@Mw+&w%
0 0

Letting t — o0, and setting ¢y = %, we obtain that

Jo7 12(t)]dt
colloll? + [5° ||w
for all non-zero w(t) € Lo([0,00],R™), ¢(t) €

C[[—0,0],R™]. This completes the proof of the the-
orem. o

)|]2dt —
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4 Numerical Examples

In this section, numerical example is given to present
the effectiveness and applicability of our stability re-

sults.

Example 8. Consider neural network (3) with param-
eters as follows:

Charuwat Chantawat,
Thongchai Botmart, Wajaree Weera

0.1
0.08
0.06 f{
0.04f|

0.02

%)
*,0 ]

X(t)
S}

-0.02

-0.04-

-0.06

-0.08

-0.1

10

Figure 1: Response solution of the system (3) where

A },B { 047 —01}

o 0.7 —08} [ —07}
05 —0.9 |’ 01 04

. :_81 02}7 . { }

. _0(.)5 004} 0o [00 02]

N R R

By _0(‘)1 091}, Bs:{o{)l 0(.)1]’

po=[ 51 Bs]oas [T 5]

D _0(')2 _0(5%4}7 Ev= 81 093]’

s :_(1) H h(-) = tanh(-)

10 =0 —oz[ O H im0 ],

From the conditions (8)-(11) of Theorem 7, wedet
0.01, hy = 0.1, hy = 0.3, d = 0.3, d; = 0.5, and
7 = 0.4. By using the LMI Toolbox in MATLAB, we
obtain ~ = 1.7637,

0.9248
—0.1581

—0.3225
0.0156

—0.0020
—0.0001

0.5107
—0.0462

0.8199
—0.0161

0.4409
—0.0481

[
P3:|:
p=|

[

[

[

Ry =

—0.1581
0.7921

0.0156
—0.3867

—0.0002
—0.0028

—0.0462
0.5004

—0.0161
0.8399

—0.0481
0.4248

E-ISSN: 2224-266X

]
]
]
]
|
]

)

)

)

)

I

I

Py

s

A

o O

S

2 =

1=

1

[ 0.0948
| —0.0521

[ 0.0011
| —0.0006

[ 0.0146
| —0.0020

[ 0.4714
| —0.0328

[ 0.1392
| —0.0521

[ 0.2493
| —0.0177

—0.0501 ]|
0.1187 | *

—0.0006 ]
0.0013 | *

—0.0020 ]|
0.0161 | *

—0.0328 ]|
0.5166 | °

—0.0521 ]
0.1790 | *

—0.0177 ]
0.2606 | °

76

w(t) =0
G — | 05445 —0.0353 O3 = [ 0.4332  0.0043 ]
37| —0.0353 0.6032 |’%3 T | 0.0043 04422 |°
[ 0.0518 —0.0083 [ 1.5450 0 ]
W2 = [ —0.0083  0.0582 ] U = | 0 1.5450 |°
0.0203  —0.0007 [ 1.0492 0 ]
Ws = [ —0.0007  0.0207 ] Uz = | 0 10492 |°
7. [ 0.0349  —0.0002 [ — [ 0.9085 0 ]
L= —0.0002 00353 |>Y3 = | 0 0908 |°
g | 08015 —01874 ] [ 0.2777  0.0028 ]
27 | 01874 08118 |>“3 7 | 0.0028 0.3139 |°
_ 1n-3[ 74622 —0.0421 ]
W1 =10 [ —0.0421  7.5146 |°
The feedback control is given by
_ —0.4478 —0.0894
u(t) = B P lx(t) = , t>0,
—0.0894 —0.5228

Moreover, the solutiorn:(¢, ¢) of the system satisfies

|, ¢

Figure 1 shows the response solution x(t) of the
neural network system (3) where w(t) = 0 and the
initial condition ¢(t) = [-0.1 0.1]7

Figure 2 shows the response solution x(¢) of the
neural network system (3) where w(t) is Gaussian
noise with mean 0 and variance 1 and the initial con-
dition ¢(t) = [-0.1 0.1]T.

)| < 1.2300e~ 01|

5 Conclusions

In this paper, the problem of a H, control for a neural
network systems with interval and distributed time-
varying delays was investigated. It is assumed that
the interval and distributed time-varying delays are
not necessary to be differentiable. Firstly, we consid-
ered an H, control for exponential stability of neural
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Figure 2: Response solution of the system (3)

network with interval and distributed time-varying de-
lays via hybrid feedback control. Secondly, by using
a novel LyapunovKarsovskii functional, the employ-
ment of a tighter bounding technique, some slack ma-
trices and newly introduced convex combination con-
dition in the calculation, improved delay-dependent
suff cient conditions for the H., control with expo-
nential stability of the system are obtained. Finally, a
numerical example has been given to illustrate the ef-
fectiveness of the proposed method. The results in this
paper improve the corresponding results of the recent
works.
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